Atomic recoil effects in slow light propagation
نویسندگان
چکیده
منابع مشابه
Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap
Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion bein...
متن کاملLight propagation in atomic Mott Insulators
We study radiation-matter interaction in a system of ultracold atoms trapped in an optical lattice in a Mott insulator phase. We develop a fully general quantum model, and we perform calculations for a one-dimensional geometry at normal incidence. Both twoand three-level Λ atomic configurations are studied. The polariton dispersion and the reflectivity spectra are characterized in the different...
متن کاملNonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report t...
متن کاملGravitational-Recoil Effects on Fermion Propagation in Space-Time Foam
Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld act...
متن کاملPropagation effects in the quantum description of collective recoil lasing
The free electron laser and collective atomic recoil laser (CARL) are examples of collective recoil lasing, where exponential amplification of a radiation field occurs simultaneously with self-bunching of an ensemble of particles (electrons in the case of the FEL and atoms in the case of the CARL). In this paper, we discuss quantum and propagation effects using a model where the particle dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental and Theoretical Physics Letters
سال: 2000
ISSN: 0021-3640,1090-6487
DOI: 10.1134/1.1328439